Breeding for durable resistance to important fungal diseases in rice

Bo Zhou

The Division of Genetics and Biotechnology

International Rice Research Institute

Outline

- Review on the host R genes and pathogen Avr genes in rice and rice blast
- Research update on host plant resistance to blast and false smut
- Outlook for durable resistance to rice blast and false smut

Rice blast is economically important to rice production

Severity of rice blast

Outbreak in super hybrid rice, China

Rice blast in Nepal

Rice blast is a devastating disease and estimated to cost an estimated \$66 billion in annual losses worldwide Mitchell and Wang

Rice blast in IRRI-ES

Worldwide collaborative efforts

JIRCAS Rice blast network

BBSRC Africa rice blast network

Rice blast WG in TRRC

IRRI INTERNATIONAL RICE RESEARCH INSTITUTE

Current status for breeding resistance to rice blast

- Utilization of host R genes is the most effective and environment-friendly strategy to control rice blast disease
- Rice and rice blast observe a typical gene-for-gene theory and resistance is not a single-player game
- Both R genes in host and Avr genes in pathogen have been extensively characterized, revealing a complicated scenario of interactions

Molecular characterization of R and Avr genes

Host *R* genes

Pathogen Avr genes

2000 2002 2004 2009 2015 AvrPita Avr1-CO39 ACE1 AvrPia, AvrPi9, AvrPii, AvrPib AvrPik, AvrPiz-t

Race dependent R genes to blast in rice genome

Locus	R genes	Chromosome	Functional mode	RGA type
Pit	Pit	1	S	NBS-LRR
Pi37	Pi37, Pish, Pi64	1	S	NBS-LRR
Pib	Pib	2	S	NBS-LRR
Pi63	Pi63	4	S	NBS-LRR
Pi2/9	Pi2, Pi9, Piz-t, Pi50 [Piz,,	6	S	NBS-LRR
The start	Pi40, Pigm]	1115-54		
Pid3	Pid3, Pi25	6	S	NBS-LRR
Pid2	Pid2	6	S	B-lectin
Pi36	Pi36	8	S	NBS-LRR
Pi5	Pi5, Pii [Pi3, Pi15]	9	D	NBS-LRR
Pia	Pia/Pi-CO39	11	D	NBS-LRR
AC134922	12 alleles	11	S	NBS-LRR
Pi54	Pi-k ^h (Pi54)		S	Atypical NBS-LRR
Pik	Pik, Pikm, Pikp, Pi1,	11	D	NBS-LRR
1 ASTA	Pik*, [Pi7]	4.575 Kal	1 siling	2 VANN
Pita	Pita [Pi12, Pita2, Pi19,	12	S	NBS-LRR
	Pi6, Pi20]	BARREN ST	A CALINIA	17722117

Race independent *R* genes (QTLs) control partial but durable resistance

R-QTL	Chromosome	Feature of protein	Notes
Pi35	1	NBS-LRR	Allelic to Pish/Pi37/Pi64
pi21	4	Proline rich	
Pb1	11	Atypical NBS-LRR	Interacting with WRKY45

IRRI INTERNATIONAL RICE RESEARCH INSTITUTE

Avr genes in M. oryzae

Avr genes	Avr products	Secreted proteins	Cognate R genes	Interaction mode
AvrPi-ta	Zinc-metalloprotease	Yes	Pita	Direct
AvrPii	Small unknown secreted protein	Yes	Pii	NA
Avr-Pik/km/kp	Small unknown secreted protein	Yes	Pik/km/kp	Direct
AvrPiz-t	Small unknown secreted protein	Yes	Piz-t	ND
AvrPia	Small unknown secreted protein	Yes	Pia	Direct
ACE1	PKS-NRPS	No	Pi33(t)	NA
Avr1-CO39	Small unknown secreted protein	Yes	Pi-CO39	Direct
AvrPi9	Small unknown secreted protein	Yes	Pi9	NA
AvrPib	Small unknown secreted protein	Yes	Pib	NA

Complicated recognition models beyond simple gene-for-gene theory

Same *R* gene to different *Avr* genes. (Cesari et al., 2013)

Different *R* alleles to different *Avr* genes. (Li et al., 2009; Wu *et al.*, 2015)

IKKI

INTERNATIONAL RICE RESEARCH INSTITUTE

Summary

- Blast R gene/QTLs predominantly encode NBS-LRR proteins
- Cluster of R gene/QTLs is prevalent in the rice genome
- The function of race-specific R genes is dependent on Avr genes in pathogen
- Avr genes in rice blast predominantly encode small secreted proteins and are main targets for mutations to escape the recognition by cognate R genes
- Different R/Avr gene pairs have evolved distinct recognition mechanisms

Research update on host plant resistance to rice blast

- Excavation of novel R gene/QTLs for increasing gene pool for breeding program
- Development of rice materials for resistance assessment and improved donors for breeding program
- Development of diagnostic tools for rice R gene/QTLs and race composition of blast population
- Understanding the stability of resistance under changing environment
- Development and validation of an integrated strategy for durable resistance to rice blast

RICE RESEARCH INSTITUTE

A pipeline for gene discovery and pre-breeding of *R* gene driven host plant resistance program

Excavation of novel *R* genes in diverse germplasm

Novel Pi2/9 alleles in 3K genomes

Differential strains used for phenotyping

Otrains	Diffe	erential lines					
Strains	Pi2	Piz-t	Pi9	Piz			
5167-1	S	R	R	R			
6006-1	R	S	R	S			
IK81-25	R	S	R	R			
M101-1-2-9-1	S	S	R	R			

2926 lines (3K panel)

Analysis using a bioinformatics tool

580 positive lines

Phenotyping using 4 7 differential strains

161 *R* lines to at least 1 strain

GWAS

Putative new alleles

IRRI INTERNATIONAL RICE RESEARCH INSTITUTE

Identification of novel *Pi2/9* functional alleles using GWAS

____ Chr7 ____ Chr8 ____ Chr9 ____ Chr10 ____ Chr11 ____ Chr12

Chr1 __ Chr2 __ Chr3 __ Chr4 __ Chr5 __ Chr6 __ Chr7 __ Chr8 __ Chr9 __ Chr10 __ Chr11 __ Chr12

Disease reaction towards rice blast isolate M101-1-2-9-1

INTERNATIONAL RICE RESEARCH INSTITUTE

Novel Pi2/9 alleles in 2K panel

IRRI INTERNATIONAL RICE RESEARCH INSTITUTE

4 new introgression lines with different R genes

CO39

Pi2-A15

Pi2-A35

Pi2-A43

Pi2-A56

Isolates	Donor and derivative introgression lines (BC3F3)							
	CO39	A15	NIL-A15	A56	NIL-A56			
JMB8401	S	R	R	R	R			
IK81-3	S	R	R	R	R			
5008-3	S	R	R	R	R			
9497-3	S	R	R	R	R			
9475-1-3	S	R	R	R	R			
5167-1	S	NA	NA	R	R			
9126-1	S	R	R	R	S			
6161-1	S	R	R	R	S			
6003-3	S	R	R	R	S			
5092-3	S	R	R	R	S			
9406-3	S	R	R	R	R			
Ca89	S	R	R	S	S			
BN111	S	R	R	R	R			
M64-1-3-9-1	S	R	R	R	R			
M101-1-2-9-1	S	R	R	R	R			
2769273	S	R	R	R	R			
JMB840610	S	R	R	R	R			
5167-1	S	R	R	R	R			
JMB8401	S	R	R	R	R			
RF(%)	0	100	100	95	74			

A promising R QTL (*Pi-A35*) identified by allele mining

PCR positive

PCR negative

Is it sufficient to have only *R* genes for resistance breeding?

Observation: *Pik* is effective in ES-IRRI but not in Bohol Reason: the frequency of *AvrPik* in ES-IRRI and Bohol is 88% and 32%, respectively

Individual plant to individual isolate

Plants to pathogen population

Avr genes are main targets under strong selection for quick mutations rendering pathogen virulence to host with cognate R genes

IRREI INTERNATIONAL RICE RESEARCH INSTITUTE

Reshuffling of Avr genes in pathogen population

Reshuffling of *Avr* genes among isolates could be random. However, the frequency of avirulent isolates in population is largely selected by deployed *R* genes, which resulted in the quick dominancy of virulent isolates and resistance erosion in 2-3 years in general.

IRRI INTERNATIONAL RICE RESEARCH INSTITUTE

Genetic events in Avr gene mutations

Avr genes	Cognate R genes	Variation patterns
AvrPi-ta	Pita	InDels, SNPs, TE insertion, Presence/absence
AvrPii	Pii	Presence/absence
Avr-Pik/km/kp	Pik/km/kp	SNPs, Presence/absence
AvrPiz-t	Piz-t	TE insertion, SNPs
AvrPia	Pia	Presence/absence
ACE1	Pi33(t)	Presence/absence, TE insertion
Avr1-CO39	Pi-CO39	Presence/absence, InDels
AvrPi9	Pi9	Presence/absence, TE insertion
AvrPib	Pib	Presence/absence, TE insertion

Tools for pathogen surveillance

Field tests (NILs or breeding materials in hotspot, MET etc) **Greenhouse tests** (Pathotype and virulence) Laboratory tests (*Avr* genes/ genome)

Surveillance tool	Needs for trial	Advantages	Disadvantages
Field tests	Differential lines, and hotspots	Visualized, fast	Sketchy, relatively lagged, and IRBL dependent
Greenhouse tests	Differential lines and single spores	Visualized, quantitative, predictive	Time consuming, less scalable, and IRBL dependent, biosafety concern
Lab tests	DNAs of single spores or lesion samples	Specific, scalable, quantitative, predictive, real-time, movable	Small no. of known Avrs, multiple haplotypes

INTERNATIONAL RICE RESEARCH INSTITUTE

A trial for pathogen surveillance in Bohol

The Avr-based diagnosis provides a more precise

profiling of race composition

IRBLs	Target R genes	Pathotype (%)	Avr gene diagnosis (%)	Additional genes
IRBL9-W	Pi9	100	100	
IRBLz-Fu	Piz	95.9		
IRBLz5-CA	Piz-5	80.8		
IRBLzt-T	Piz-t	80.8	2.7	Pi19 or its allele in CO39
IRBLks-F5	Piks	0		
IRBLkp-K60	Pik-p	98.6	D: 20.5	Pi19 or its allele in CO39
IRBL7-M	Pi7	20.5	D: 20.5	
IRBLk-Ka	Pik	20.5	D: 20.5	
IRBLkh-K3	Pik-h	23.3	D: 20.5, E: 1.3	Additional gene to only one isolate
IRBLkm-Ts	Pik-m	21.9	D: 20.5, E: 1.3	
IRBL1-CL	Pi1	23.3	D: 20.5, E: 1.3	Additional gene to only one isolate
IRBLsh-S	Pish	97.3		/
IRBLt-K59	Pit	9.6		
IRBL5-M	Pi5	95.9	86.3	Additional gene to 7 isolate
IRBL3-CP4	Pi3	95.9	86.3	Additional gene to 7 isolate
IRBLi-F5	Pii	93.2	86.3	Additional gene to 6 isolate
IRBLb-B	Pib	0		
IRBLa-A	Pia	6.8	0	Additional gene to 7 isolate
IRBLta-K1	Pita	78.1	0	Pi19 or its allele in CO39
IRBL12-M	Pi12	45.2		
IRBL20-IR24	Pi20	97.3		
IRBLta2-Re	Pita-2	21.9		
IRBL19-A	Pi19	78.1		
IRBL11-Zh	Pi11	5.5		
CO39	S check	78.1		Pi19 or its allele in CO39
LTH	S check	0		Т

MoAVR®-chip for diagnosis of rice blast pathogen

How to breed durable resistance to rice blast?

An integrated strategy for durable resistance to rice blast

Pyramiding of multiple *R* QTLs controls strong resistance to virulent isolates of rice blast

Pyramiding of pi21, Pi34, qBR4-2, qBR12-1

Pyramiding of *pi21*, *Pi34*, *Pi35*

Fukuoka et al., 2015

Yasuda et al., 2015

efficient utilization of R genes (race specific)

Precise survey of deployed R genes in varieties using diagnostic markers and phenotyping Determination of effectiveness of individual *R* gene or combinations

> Pathogen surveillance (field, greenhouse and laboratory

Introgression of effective *R* gene or combinations via MAS Pyramiding, Rotation, or multilines

Current resistance breeding program

- Blind utilization of race specific R genes
- Neglected utilization of non-race specific R genes with large effects
- Reliance on resistance donors and traditional breeding together with field selection
- Less-economical utilization of R genes

Sustainable resistance breeding program

- Combination of non-race and race specific R genes
- Pathogen-informed deployment of race specific R genes or combinations
- R-gene orientated molecular breeding
- Economical utilization of R genes to save resource for other traits, e.g., yielding
- Climate resilience of resistance to blast disease (high nitrogen and extreme temperature and rainfall)

Research activities on host resistance to false smut

- To develop a highly reproducible and scalable phenotyping protocol using artificial inoculations
- To develop hotspots for field assessment and epidemiology modeling
- To evaluate disease resistance of a diverse panel of germplasm and identify lines with high levels of resistance
- To identify R gene/QTLs to false smut and develop gene linked molecular markers

Optimization of the boot-injection method for evaluating rice resistance to false smut

Injection at the booting stage (3-7 days before

Smut ball formation, 2 weeks after inoculation

Distinct specificities in the interactions between rice and false smut

Rice entry	24/2	Number	of smu	t balls/h	ill (PFS	S: Philip	pine Fa	lse smut	
	PFS	PFS	PFS	PFS	PFS	PFS	PFS	PFS	PFS
12/11/3 P	23-1	25-1	31-1	34-1	36-1	44-2	99-2	102-1	109-1
	19	0	2	12-11	7	7	2-	21-12	123
2	93	20	No.	~~~	6	17	2	128	73
3	96	29	25	215	6	25			153
4	0	0	4	36	47	18	0	44	33
5	225	67	17-5	222	33	208	295	309	312
6	352	29	61	23	224	50	133	311	110
7	0	0	3	15	12-1	7	0	97	19
8	28	43	1 H	4-1	2-1	N-R-	0	5	9
9	40	48	5	No.V	0	N-S	0	246	16

Line #3

Line #5

Line #6

PFS 99-2

Acknowledgements

RGDR group

Dr. Mary Jeanie Yanoria Mr. Gui Xiao Mr. Jonas Padilla Ms. Berlaine Quime Mr. Chaivarakun Chaipanya Ms. Shiela Marie Selisana

Research Program on Rice Global Rice Science Partnership

Host-Plant Interaction cluster

Dr. Hei Leung Dr. Casiana Vera Cruz Dr. II Ryong Choi Dr. Ricardo Oliva

Collaborators

Dr. Xiaoyuan Zhu, GDAAS, China Dr. Zhengguang Zhang, NAU, China Dr. Guo-Liang Wang, OSU, USA Dr. Naweed Naqvi, TLL, Singapore Dr. Simon Krattinger, ZUH, Switzerland

Bill & Melinda Gates Foundation

Switzerland Science Foundation

