Lanznua ۲ ۲ Kabul . Xi ۲ hhad Taejo Kwangju 育 Peshawar **A**Islamabad Shanghai Chongging Wuhan 0 ۲ Pakistan East **New Delhi** 63 Changsha China Kathmandu Zigong . Jaipur Agra Sea Guwahati 0 ۲ Taipei Kunming Hengyang Karachi Kanpur Dhaka 1 \odot . st Kota Guangzhou Kolkata Rajkot . **@** Bhopal Hanoi Kaohsiung Chittagong Macau **Bombay (Mumbai)** Rangoon (Yangon) 1 Hyderabad Hubli-Dharwar Manila Bangkok Bangalore 黄い pian Ho Chi Minh City Coimbatore Cebu 0 Madurai Phnom Penh Colombo Davao 1 **Bandar Seri Begawan** Male Medan Kuala Lumpur 0 Singapore **2015 HRDC MRYT Locations** Palembang DS = 8, WS = 11, Entries = 41 . Ujungpandang ★ Both seasons 🛛 Jakarta ★ WS only Ocean 1 Dili Semarang 1 Timor

K

2015 HRDC MRYT Site

2015 HRDC MRYT Locations

				DS		W	/S		
#	Site	COUNTRY	Sponsor	R ²	CV%	R ²	CV%	Latitude	Longitude
1	Kaku	Pakistan	RRI			0.93	6.9	31 ⁰ 4' N	74 ⁰ 2' E
2	Faizabad	India	Advanta			0.94	3.9	26 ⁰ 8′ N	82 ⁰ 2' E
3	Lucknow	India	Nuziveedu			0.67	15.6	26 ⁰ 5' N	80 ⁰ 6' E
4	Pabna	Bangladesh	BRAC	0.69	5.7	0.73	4.9	24 ⁰ 0' N	89 ⁰ 2' E
5	Gazipur	Bangladesh	BRAC	0.81	4.9	0.74	9.2	23 ⁰ 6' N	90 ⁰ 3' E
6	Raipur	India	JK Agri	0.74	9.7	0.80	8.2	21 ⁰ 2' N	81 ⁰ 6' E
7	Hanoi	Vietnam	FCRI	0.92	5.1	0.85	6.2	20 ⁰ 9' N	105 ⁰ 8' E
8	HaiDuang	Vietnam	Bioseed	0.97	3.5	0.81	9.4	20 ⁰ 6' N	106 ⁰ 2' E
9	Nueva Ecija	Philippines	PhilRice	0.51	13.9	Typhoon I	Damaged	15 ⁰ 7' N	120 ⁰ 9' E
10	Los Baños	Philippines	IRRI	0.71	7.2	0.61	16.0	14 ⁰ 2' N	121 ⁰ 3' E
11	Sukamandi	Indonesia	ICRR	0.53	14.1	Pend	ding	6 ⁰ 7' S	107 ⁰ 6' E
			Total Sites	8	3	1	1		

Thanks to the Site Sponsors for Services to Other HRDC Members !

ANOVA for Hybrid Yield over Seasons									
Season Yield t Test N Maturity									
DS	7338	Α	<mark>90</mark> 3	129					
WS	5741	В	971	118					

ANOVA for Hybrid Yield over Sites										
(2015 HRDC MRYT)										
Site	Country	Yield	t Test	N	Season	Maturity				
NuevaEcija	Philippines	10053	Α	120	DS	117				
Faizabad	India	8415	В	120	WS	130				
LosBanos	Philippines	7070	C	237	DS + WS	118				
Sukamandi	Indonesia	<mark>6955</mark>	С	120	DS	112				
Pabna	Bangladesh	<mark>6331</mark>	D	240	DS + WS	132				
Gazipur	Bangladesh	6216	DE	240	DS + WS	117				
Raipur	India	<mark>61</mark> 34	Е	226	DS + WS	118				
HaiDuong	Vietnam	5484	F	171	DS + WS					
Hanoi	Vietnam	5436	FG	240	DS + WS	126				
Lucknow	India	5297	G	80	WS					
Kala Shah Kakı	u Pakistan	5134	Н	80	WS					

ANOVA for Hybrid Yield on Hybrid (both seasons)							
		> Inbred	> Hybrid				
Entry	Yield	CK %	СК %	t Test	N	Note	
HRDC1511	7159	26.8	14.0	Α	49	CNRRI	
HRDC1531	7100	25.8	13.0	Α	48	LPHT	
HRDC1519	6975	23.5	11.1	AB	48	JK Agri	
HRDC1530	6897	22.2	9.8	ABC	49	LPHT	
HRDC1517	6805	20.5	8.3	BCD	49	JK Agri	
IR96408H	6796	20.4	8.2	BCDE	49	IRRI	
HRDC1529	6795	20.4	8.2	BCDE	48		
HRDC1515	6791	20.3	8.1	BCDE	48		
HRDC1526	6787	20.2	8.0	BCDE	49		
HRDC1506	6721	19.0	7.0	BCDEF	45		
HRDC1528	6694	18.6	6.6	BCDEFG	49		
IR107812H	6692	18.5	6.5	BCDEFG	43		
IR107808H	6675	18.2	6.3	BCDEFGH	49		
HRDC1525	6600	16.9	5.1	CDEFGH	46		
HRDC1516	6595	16.8	5.0	CDEFGHI	49		
IR107807H	6591	16.7	4.9	CDEFGHI	43		
HRDC1501	6572	16.4	4.6	DEFGHI	49		
HRDC1509	6514	15.4	3.7	DEFGHIJ	47		
IR107810H	6498	15.1	3.5	DEFGHIJK	43		
HRDC1508	6494	15.0	3.4	DEFGHIJK	46		
HRDC1520	6488	14.9	3.3	EFGHIJK	43		
HRDC1507	6464	14.5	2.9	FGHIJK	46		
IR94398H	6440	14.1	2.5	FGHIJK	48		
HRDC1522	6439	14.1	2.5	FGHIJK	49		
HRDC1502	6439	14.0	2.5	FGHIJK	46		
HRDC1505	6398	13.3	1.9	GHIJK	49		
HRDC1513	6375	12.9	1.5	HIJK	45		
HRDC1527	6370	12.8	1.4	HIJK	46		
HRDC1518	6362	12.7	1.3	HIJK	46		
HRDC1523	6361	12.7	1.3	нік	46		
IR75217H	6281	11.2	0	IJKL	49		
HRDC1504	6281	11.2	0.0	IJKL	45		
IR107805H	6230	10.3	-0.8	JKL	46		
HRDC1521	6222	10.2	-0.9	JKL	46		
HRDC1512	6213	10.0	-1.1	JKL	49		
HRDC1503	6210	10.0	-1.1	JKL	48		
HRDC1524	6193	9.7	-1.4	KL	46		
HRDC1510	6052	7.2	-3.7	L	49		
IR107806H	5762	2.1	-8.3	м	44		
PSBRc82	5646	0	-10.1	M	39		

MEAN	6511
R ²	0.92
CV%	<u>9.67</u>

2015 <mark>DS</mark>	2015DS MRYT Yields across Locations									
Site	Yield	t Test	Ν	Maturity						
NuevaEcija	10,053	Α	120	117						
LosBanos	9,024	В	117	120						
Pabna	7,283	С	120	143						
Sukamandi	<mark>6,9</mark> 55	D	120	112						
Gazipur	6,728	Е	120	144						
HaiDuong	6,275	F	<mark>66</mark>	137						
Hanoi	6,187	F	120	143						
Raipur	5,766	G	120							

	2	015 <mark>DS</mark> MR	YT Yields b	v Hybrid				
		> Inbred	> Hybrid	, ,				
Entry	Yield	СК %	СК %	t Test	N	Note		
HRDC1511	8,226	32.0	12.9	А	24	CNRRI		
HRDC1531	8,222	31.9	12.9	Α	24	LPHT		
HRDC1530	8,088	29.8	11.0	AB	24	LPHT		
IR107805H	7,916	27.0	8.7	ABC	21	IRRI		
HRDC1519	7,897	26.7	8.4	ABC	24	Pan Seeds		
HRDC1506	7,863	26.2	7.9	ABCD	21			
IR107810H	7,669	23.0	5.3	BCDE	21			
HRDC1517	7,612	22.1	4.5	BCDEF	24			
HRDC1515	7,601	22.0	4.3	BCDEFG	24			
IR96408H	7,589	21.8	4.2	CDEFG	24			
IR107808H	7,509	20.5	3.1	CDEFGH	24			
HRDC1529	7,492	20.2	2.8	CDEFGH	24			
IR107807H	7,457	19.6	2.4	CDEFGH	21			
HRDC1526	7,383	18.5	1.4	DEFGHI	24			
HRDC1525	7,373	18.3	1.2	DEFGHI	21			
IR107812H	7,347	17.9	0.8	EFGHI	21			
HRDC1501	7,345	17.8	0.8	EFGHI	24			
HRDC1524	7,312	17.3	0.4	EFGHIJ	21			
HRDC1528	7,304	17.2	0.3	EFGHIJ	24		DATANI	72
IR75217H	7,285	16.9	0.0	EFGHIJ	24		MEAN	753
HRDC1513	7,272	16.7	-0.2	EFGHIJ	21		-2	
HRDC1504	7,239	16.1	-0.6	EFGHIJ	21		R ²	0.8
HRDC1527	7,226	15.9	-0.8	EFGHIJ	21			
HRDC1508	7,217	15.8	-0.9	EFGHIJ	21		CV%	9.9
HRDC1520	7,216	15.8	-0.9	EFGHIJ	21		1	
HRDC1516	7,173	15.1	-1.5	EFGHIJ	24			
IR94398H	7,164	14.9	-1.7	EFGHIJ	24			
HRDC1523	7,117	14.2	-2.3	FGHIJ	21			
HRDC1518	7,116	14.2	-2.3	FGHIJ	21			
HRDC1503	7,077	13.5	-2.9	FGHIJ	24			
HRDC1509	7,065	13.4	-3.0	GHIJ	24			
HRDC1507	7,019	12.6	-3.7	нык	21			
HRDC1512	7,009	12.4	-3.8	нык	24			
HRDC1505	6,998	12.3	-3.9	нык	24			
HRDC1510	6,980	12.0	-4.2	нык	24			
HRDC1522	6,971	11.8	-4.3	нык	24			
HRDC1521	6,889	10.5	-5.4	IJК	21			
HRDC1502	6,806	9.2	-6.6	ЛК	21			
IR107806H	6,556	5.2	-10.0	KL	24			
PSBRc82	6,233	0.0	-14.4	L	15			

2015WS MRYT Yields across Locations

Site	Yield	t Test *	N	Maturity
Faizabad	8415	Α	120	
Gazipur	5704	С	120	115
HaiDuong	4986	F	105	113
Hanoi	4685	G	120	120
KalaShah	5134	Ε	80	
LosBanos	5165	Ε	120	117
Lucknow	5232	Ε	120	
Pabna	5380	D	120	121
Raipur	6551	В	106	118

		2015WS	MRYT Yields by	Hybrid				
Entry	Yield		> Hybrid CK %	t Test	N	Note		
HRDC1526	6195	18.6	6.0	А	26	Ankur		
HRDC1502	6145	17.7	5.1	AB	26	Bisco		
HRDC1529	6118	17.1	4.7	AB	25	Sichuan AAS		
IR94398H	6106	16.9	4.4	AB	26	IRRI		
HRDC1511	6096	16.7	4.3	AB	26	CNRRI		
HRDC1528	6087	16.5	4.1	ABC	26			
HRDC1519	6038	15.6	3.3	ABCD	25			
IR107812H	6023	15.3	3.0	ABCDE	23			
HRDC1517	6001	14.9	2.6	ABCDEF	26			
HRDC1516	5999	14.8	2.6	ABCDEF	26			
HRDC1515	5954	14.0	1.8	ABCDEFG	25			
HRDC1507	5951	13.9	1.8	ABCDEFG	26			
HRDC1525	5920	13.3	1.3	ABCDEFG	26			
HRDC1531	5910	13.1	1.1	ABCDEFGH	25			
HRDC1509	5905	13.1	1.0	ABCDEFGH	24			
HRDC1522	5889	12.8	0.7	ABCDEFGH	26			
HRDC1501	5880	12.6	0.6	ABCDEFGH	26			
IR75217H	5846	11.9	0.0	ABCDEFGH	26			
HRDC1508	5843	11.9	-0.1	ABCDEFGH	26		MEAN	- 5
HRDC1505	5824	11.5	-0.4	BCDEFGH	26			
HRDC1520	5741	9.9	-1.8	CDEFGHI	23		R2	. (
IR107810H	5739	9.9	-1.8	CDEFGHI	25			
HRDC1523	5712	9.4	-2.3	DEFGHI	26		CV%	8
HRDC1518	5710	9.3	-2.3	DEFGHI	26		CV70	
IR107808H	5701	9.1	-2.5	DEFGHI	23			
HRDC1530	5684	8.8	-2.8	DEFGHI	26			
HRDC1506	5681	8.8	-2.8	EFGHI	25			
HRDC1521	5654	8.3	-3.3	FGHI	26			
HRDC1527	5633	7.8	-3.6	GHIJ	26			
HRDC1513	5559	6.4	-4.9	ніјк	25			
HRDC1504	5458	4.5	-6.6	IJKL	25			
HRDC1512	5410	3.6	-7.5	IJKLM	26			
IR107806H	5330	2.0	-8.8	JKLM	23			
HRDC1503	5296	1.4	-9.4	KLM	25			
IR96408H	5265	0.8	-9.9	KLM	26			
PSBRc82	5223	0.0	-10.7	LM	25			
HRDC1524	5212	-0.2	-10.8	LM	26			
HRDC1510	5101	-2.3	-12.7	MN	26			
IR107807H	4853	-7.1	-17.0	NO	26			
IR107805H	4742	-9.2	-18.9	0	21			

More Data (Agronomic and Grain Quality)

http://hrdc.irri.org

	2015 HRDC MRYT Locations									
		ws								
#	Site	R ²	CV%	R ²	CV%					
1	Kaku			0.93	6.93					
2	Faizabad			0.94	3.85					
3	Lucknow			0.67	15.59					
4	Pabna	0.69	5.69	0.73	4.89					
5	Gazipur	0.81	4.85	0.74	9.15					
6	Raipur	0.74	9.69	0.80	8.19					
7	Hanoi	0.92	5.10	0.85	6.15					
8	HaiDuang	0.97	3.53	0.81	9.38					
9	Nueva Ecija	0.51	13.88							
10	Los Baños	0.71	7.17	0.61	16.03					
11	Sukamandi	0.53	14.06							

Experiments were much improved :

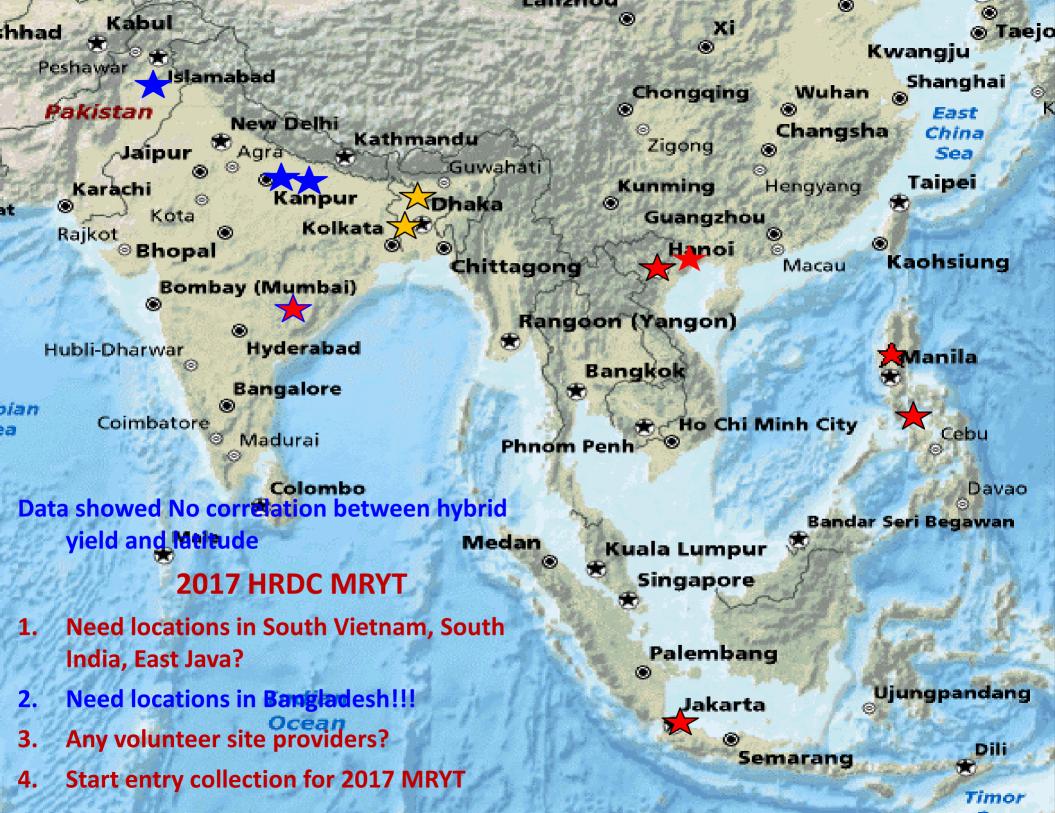
High R² and Low CV% without location discarded (>20%)

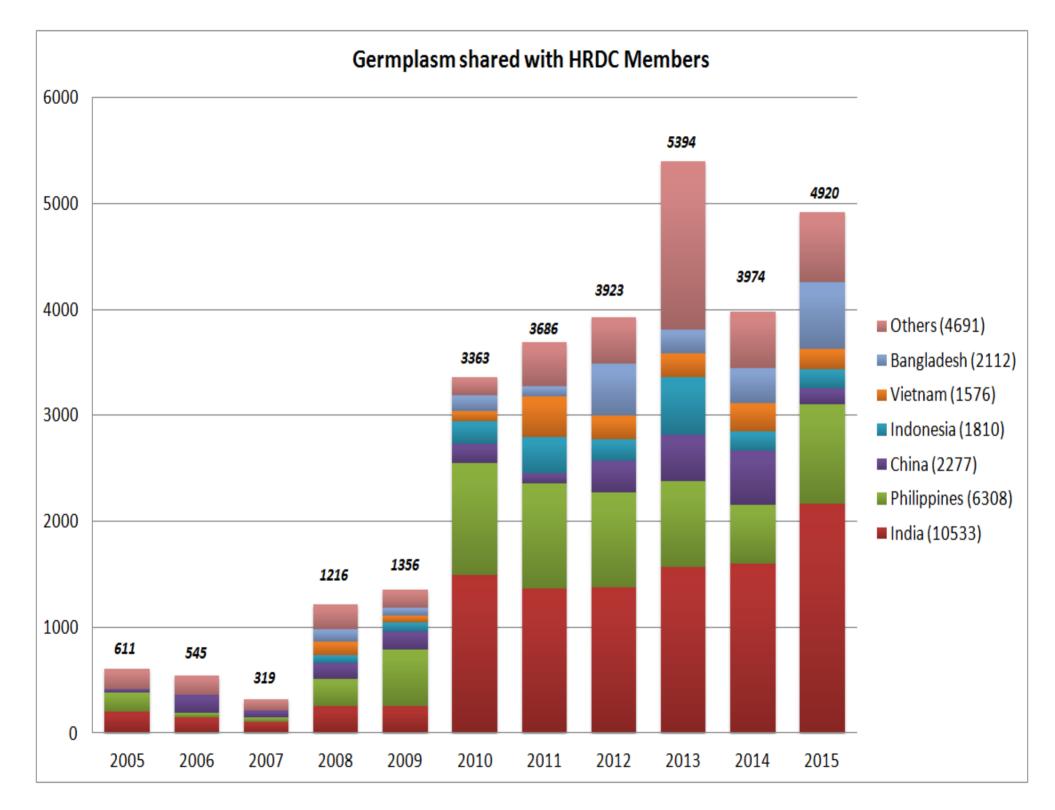
Hybrid Yield Difference between Seasons								
	DS	ws	DS - WS	DS > WS %				
		All H	lybrids					
Mean Yield (kg/ha)	7338	5715	1623	28.4				
> Inbred CK %	17.5	9.3	8.2					
	٦	Гор 5 High-yi	ielding Hybr	ids				
Mean Yield (kg/ha)	8275	6132	2143	34.9				
> Inbred CK %	32.8	17.4	15.4					

1. Yield: DS yield much higher than WS

- 1) Difference for all hybrids: 1623 kg/ha
- 2) Difference for top 5-high-yielding hybrids: 2143 kg/ha

2. Yield heterosis: DS is significantly higher than WS


- 1) All hybrids: 17.5 vs 9.3 %
- 2) Top 5 high-yielding hybrids: 32.8 vs 17.4%


3) Is it the time to focus more on development of hybrids for WS?

- a) Research for causes of low-yielding & heterosis in WS physiologic & agronomic traits, field management
- b) Traits required for increasing hybrid yield & heterosis in WS

		> Inbred	> Hybrid			
Entry	Yield	CK %	CK %	t Test	N	Note
	Yield of	Top 5 Hig	h-Yielding	Hybrids (2	015DS	;)
HRDC1511	8,226	32.0	12.9	А	24	CNRRI
HRDC1531	8,222	31.9	12.9	А	24	LPHT
HRDC1530	8,088	29.8	11.0	AB	24	LPHT
IR107805H	7,916	27.0	8.7	ABC	21	IRRI
HRDC1519	7,897	26.7	8.4	ABC	24	Pan Seeds
	Yield	of Top 5 Hig	h-Yielding	Hybrids (201	L5WS)	
HRDC1526	6195	18.6	6.0	А	26	Ankur
HRDC1502	6145	17.7	5.1	AB	26	Bisco
HRDC1529	6118	17.1	4.7	AB	25	Sichuan AAS
IR94398H	6106	16.9	4.4	AB	26	IRRI
HRDC1511	6096	16.7	4.3	AB	26	CNRRI

- Chinese hybrids yield higher than the averaged hybrids in DS – Why & Traits?
- Less Chinese hybrids in the top high-yielding list in WS not adapted to WS?

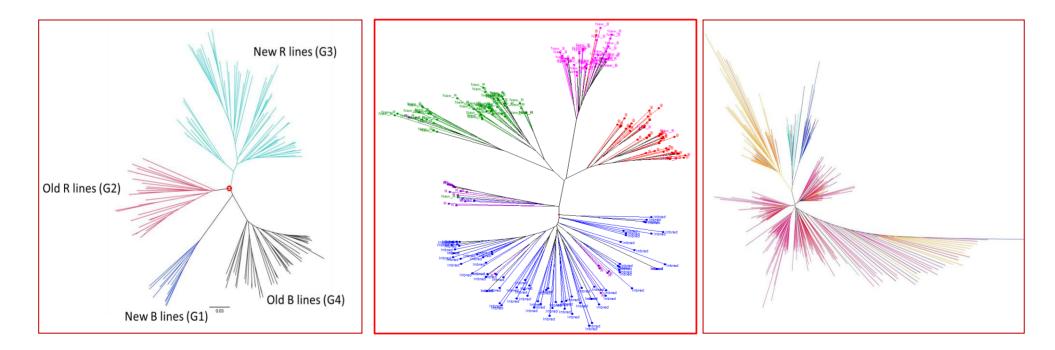
Summary	of IRRI Ri	ce Hybrid	s (Mestis	o) Releas	eased or Release-pending in the Philippines				nes		
	Mestiso	Mestiso	Mestiso	Mestiso	Mestiso	Mestiso	estiso Mestiso Mestiso				
Name	25	26	30	31	32	56	61	68	IR82386H		
Average (kg/ha)	6711	6740	6574	6357	6136	6489	6442	<mark>6632</mark>	6507		
> PSBRC 82 (kg/ha)	548	505	644	425	310	346	658	490	440		
> PSBRC 82 (%)	8.9	8.1	10.9	7.2	5.3	5.6	11.4	8	7.2		
Data point	95	95	67	91	69	84	100	108	117		
Maturity <mark>(</mark> d)	112	115	111	111	110	113	110	113	114		
Total Milling (%)	67.2	67.8	68.2	67.3	66.9	66.9	69.3	<mark>66.</mark> 3	67.3		
Head Rice <mark>(</mark> %)	48.8	50.5	45.5	49	48.5	47.1	54.9	45.7	46.9		
Chalkiness (%)	16.3	15.9	9.3	20.9	17	15.8	12.1	7.9	16.9		
Amylose (%)	24.9	23.9	20.1	23.1	23.9	24.5	21.9	24.5	24.2		
Grain Length (mm)	7.00	6.82	6.88	6.88	6.96	6.75	<mark>6.9</mark> 2	<mark>6.8</mark> 6	6.94		
Grain Width (mm)	2.02	1.97	2.12	2.20	2.29	2.26	1.98	1.94	2.01		
Year Released	2010	2010	2011	2011	2011	2014	2014	2015	Pending		
IP			IRRI	-PhilRice J	oint			IRRI Sole	IRRI-PhilRice		

IRRI Ne	w and Pro	omising H	ybrids Tes	ted with d	ata points	> 10	
Name	IR 90875H	IR 96408H	IR 107808H	IR 107812H	IR 106638H	IR 96441H	IR 90872H
Average Yield (kg/ha)	7677	7205	6831	6866	7675	7440	7145
> PSBRC 82 (kg/ha)	872	825	809	665	985	665	633
Yield Advantage (%)	12.8	12.9	13.4	10.7	14.7	9.8	9.7
Tested in Season/Year/Environment	6/4/9	4/3/17	4/2/12	4/2/11	5/4/6	8/4/20	7/4/28
Data Point	22	22	14	13	12	25	30
% of Wins over PSBRC 82	81	90	85	75	91	79	83
Maturity (d)	121	122	123	123	120	120	124
Total Milling (%)	67.7	63.9	67.5	66.9	68.2	65.0	64.9
Head Rice (%)	49.3	40.1	48.5	46.0	46.0	36.6	48.2
Chalkiness (%)	6.0	5.8	13.4	9.4	12.6	11.1	<mark>8.</mark> 5
Amylose (%)	23.6	23.1	22.4	24.5	21.0	22.8	25.4
Grain Length (mm)	6.7	7.1	7.0	6.9	6.9	6.9	6.6
Grain Width (mm)	2.1	2.2	2.3	2.2	2.1	2.0	2.1
Licensing Option		Further Test	ting + Limited	d Exclusive or	Non-exclusiv	ve Licensing	

Please visit 2016DS hybrid rice yield trials at Los Banos

- 1. Select what hybrids you like & Question us for more data
- 2. Request sample seeds for further testing, and licensing possibility

Progress made for IRRI new rice hybrids


Comparison of IRRI Rel	eased Mest	io Hybrids and Nev	v Promising Hybrids
	Mestiso	New Hybrids	Difference
Average Yield (kg/ha)	6510	7263	753
> PSBRC 82 (kg/ha)	485	779	294
> PSBRC 82 (%)	8.1	12.0	3.9

	2015	NS Hydera	bad IRRI Hy	brid Ric	e Yield	Trial	
Entry	Yield	> INBRED %	>IR75217H %		DTH	Whole %	Head %
H6444GOLD	7,227	50.4	32.4	Α	102	70.4	57.1
IRRI2015H-18	6,686	39.2	22.5	AB	92	67.9	56.4
IRRI2015H-12	6,282	30.8	15.1	ABC	88	62.9	48.8
IRRI2015H-19	6,203	29.1	13.7	ABCD	91	71.8	60.7
IRRI2015H-13	6,055	26.0	10.9	ABCDE	82	71.4	55.0
IRRI2015H-20	6,013	25.2	10.2	ABCDE	81	70.4	56.8
IRRI2015H-3	5,920	23.2	8.5	BCDE	85	68.0	51.4
IRRI2015H-17	5,458	13.6	0.0	BCDEF	86	73.2	60.7
IRRI2015H-9	5,416	12.7	-0.8	CDEF	78	70.4	59.6
IRRI2015H-10	5,373	11.9	-1.6	CDEFG	86	69.6	53.2
IRRI2015H-2	5,338	11.1	-2.2	CDEFG	84	70.7	60.4
IRRI2015H-7	5,266	9.6	-3.5	CDEFG	78	70.7	56.8
IRRI2015H-6	5,147	7.1	-5.7	CDEFG	75	70.9	59.3
IRRI2015H-11	4,993	3.9	-8.5	DEFGH	88	70.0	57.5
IRRI2015H-14	4,898	2.0	-10.3	EFGH	87	71.1	58.2
IRRI2015H-1	4,824	0.4	-11.6	EFGH	88	73.2	58.9
IRRI2015H-4	4,814	0.2	-11.8	EFGH	88	71.4	58.9
IRRI-154	4,804	0.0	-12.0	EFGH	85		
IRRI2015H-8	4,655	-3.1	-14.7	FGH	88	71.1	59.6
H6129GOLD	4,612	-4.0	-15.5	FGH	92	73.9	54.6
IRRI2015H-5	4,436	-7.7	-18.7	FGH	97	71.1	54.3
IRRI2015H-16	4,257	-11.4	-22.0	FGH	98	69.3	58.6
IRRI2015H-15	4,130	-14.0	-24.3	GH	85	71.1	56.8
MTU1010	3,795	-21.0	-30.5	н	89		

5,275	MEAN
0.73	R2
14.49	CV%
1,256	LSD

On-going studies of tropical heterotic groups

- 1. Molecular Profile + Field Evaluation
- 2. Difference (molecular and phenotypic) of yield heterosis for germplasm before and after 2005
- 3. Heterosis of hybrid rice germplasm between PhilRice and IRRI
- 4. Heterotic groups using 3k germplasm
- 5. Talk to us for how to collaborate

Thanks to the Team Members

Special Personal Thanks to: HRDC Members, Friends & Colleagues

Å

'n