

Application of Resistance Gene Analog Markers to Analyze Genetic Structure and Diversity in Rice

Juansheng Ren

Sichuan Academy of Agricultural Sciences

Chengdu ·China

September 2012

Contents

1. Why resistance gene analog (RGA) markers?

2. Materials and methods

3. Results

4. Summary

Why do we use resistance gene analog (RGA) markers?

>What are resistance gene analogs?

Their conserved domains are homologous to known resistance genes:

NBS-LRR (nucleotide binding site-leucine rich repeat),
ABC (ATP-binding cassette transporter)
PK (protein kinase)
NBS TM (nucleotide binding site-transmembrane domain)
LRR TM (leucine-rich repeat-transmembrane domain)

RGAs distribution in rice chromosomes

Rice Genome Annotation Project

Funded by the NSF

Search Examples:

Putative Function Search Tool

kinase serine -	- will match genes annotated with both serine kinase, with just serine r	ar with just kinase
	The state of the second st	The second

Search Genes:

	т	here are 404 genes matched with disease resistance:
Chr	Locus Identifier	Participant Francisco
5.10F	Locus Inentiner	Printee Function
Chrl	LOC 0501002810	resistance related receptor like kinase, butative, expressed
Chel	LOC 0501002840	resistance related receptor like kinase putative, expressed
Chr1	LOC 0501004070	vertcillum will disease resistance protein, putative, expressed
Chr1	LOC 0501005600	NBS-LRR disease resistance protein, jutative, expressed
Chr1	LOC 0s01005620	NBS-LRR disease resistance protein, putative, expressed
Chr1	LOC 0s01006520	varticillium wilt disease resistance protein, putative, expressed
Chr1	LOC 0s01006720	discuse resistance postern SIVe2 precursor, picative, expressed
Chr1	LOC 0s01006730	verticilities will accase resistance protein, putative, and assed
Chr1	LOC_0s01q06d36	"divease fesistance protêm Sivez précumor, putativé, éxpressed
Chr.1	LOC_0s01q06870	resistance protein SIVe1 precursor, putative, expressed
Chr1	LOC_0s01q06900	verticillium wilt disease resistance protein Ve2, putative, expressed
Chr1	LOC_0s01q06920	resistance protein SIVe1 precursor, putative, expressed
Chr1	LOC_0s01q07090	5-azacytidine resistance protein azr1, putative, expressed
Chr1	LOC_0s01q07200	disease resistance protein, putative, expressed
Chr1	LOC_0s01q08180	BRASSINAZOLE-RESISTANT 2, putative, expressed
Chr1	LOC_0s01g08260	pleiotropic drug resistance protein 4, putative, expressed
Chrl	LOC_0s01q08370	symbiosis-related disease resistance protein, putative, expressed
Chr1	LOC 0s01016370	NBS-LRR type disease resistance protein, putative, expressed
Chr1	LOC 0s01g23380	stripe rust resistance protein Yr10, putative, expressed
Chrl	LOC 0s01024010	pleiotropic drug resistance protein, putative, expressed
Chrl	LOC 0s01025386	multidrug resistance associated protein, putative, expressed
Chrl	LOC 0s01025720	disease resistance protein RGA4, putative, expressed
Chrl	LOC 0s01025740	powdery mildew resistance protein PM3F putative, expressed
Chrl	LOC 0s01025760	powdery mildew resistance protein PM3F putative, expressed
Chrl	LOC 0s01025810	powdery mildew resistance protein PM3A putative, expressed
Chrz	LOC Os01039870	
Chrl	100 0+01030040	disease resistance profain DPM1 refative avpressed
Chel	LOC Oroladaano	abilition is a section of the protein and the assessed
Chel	100 0:01:042230	presstopic drug resistance protein, putative, expression
Chart	LOC CHOLINA 170	presentopic drug resistance protein, putative, expression
Chri	LOC_OSUIQ42.100	prelatropic drug resistance protein, putative, expressied
Chri	LOC Osulgazalu	preiotropic drug resistance protein, putative, expressed
Chri	LOC_0s01q50070	multidrug resistance protein 1, putative, expressed
Chri	LOC_0s01q57270	disease resistance RPP13-like protein 1, putative, expressed
Chri	LOC_0s01q57070	discuss resistance protein RP52, putative, expressed
Chri	LOC_0s01q65800	powdery mildew resistant protein 5, putative, expressed
Chr1	LOC_0s01067580	multidrug resistance-associated protein, putative, expressed
Chr1	LOC 0s01g71106	NBS-LRR disease resistance protein, putative, expressed
Chr1	LOC_0s01g71114	disease resistance protein RGA4, putative, expressed
Chr1	LOC 0s01g72390	NBS type disease resistance protein, putative, expressed
Chr1	LOC 0s01g72680	discase resistance protein RPS2, putative, expressed
Chr2	LOC 0s02002640	NBS-LRR disease resistance protein, putative, expressed
Chr2	LOC 0s02g02670	NBS-LRR disease resistance protein, putative, expressed
Chr2	LOC Os02g94530	in an invest sesistance like and stabilition proceeded, increased,
Chr2	LOC 0s02011760	pleiotropic drug resistance protein, putative, expressed
Chr2	LOC 0s02016070	In disease resistance protein, putative, expressed
Chr2	LOC 0s02016250	NBS-LRR disease resistance protein, putative, expressed
Chr2	LOC 0s02g17304	resistance protein, putative, expressed
Chr2	LOC 0s02g10000	disease resistance protein RGA2, putative, expressed
Chr2	LOC 0s02g10140	NBS type disease resistance protein, putative, expressed
Chr2	LOC 0s02g10510	stripe rust resistance protein Yr10, putative, expressed
Chr2	LOC 0s02019750	NBS-LRR type disease resistance protein, putative, expressed
Chr2	100 0502021250	olejotropic data resistance protein 5, putative, expressed
Chr2	100 0502027710	disease resistance protein, putative, expressed
	So be, Selan Sel and A Market Seland	and the second process in the second

The identified RGAs were marked for gene expression and coding resistance protein in TIGR rice.

RGA markers are associated with disease resistance

► RGA marker primers can be designed based on the conserved sequences of known resistance genes or the exon sequences of resistance gene analogs.

Rice is seriously suffered from many pathogens and insects

Diseases and insects cause rice yield losses

In China, 4~5 million tons of the losses each year.

-----Chinese Agricultural Science Bulletin, 2006, 22(2):343-347

➢For the first time, 472 genome-wide RGA markers were used to analyze 178 USDA rice core entries for genetic variations related to their ancestral backgrounds and geographic distributions.

Comparison of the results from RGA markers with SSR markers will confirm if RGAs could be used as a new application.

Materials and methods

They were selected for genotyping because they are well adapted in Sichuan area with many interesting traits.

178 USDA rice core entries were

planted in Chengdu

See USDA rice core collection in 2007 Crop Science 47: 869-878

SAAS

Methods

Design RGA markers

472 genome wide RGA markers were designed by Primer Premier 6.0.

Genotyping

178 core entries were genotyped with the 472 RGA markers. > Structure and diversity

The genotypic information is used to analyze population

structure and genetic diversity among 178 core entries.

Results

RGA marker polymorphism

Among 472 RGA markers

>21 failed to be amplified

▶451 yielded 719 DNA bands

>Among 451 RGAs, 313 were monomorphic

▶138 RGAs were polymorphic. They yielded 372 alleles with 96% of polymorphic alleles

Genome distribution of polymorphic RGA markers

Inner ring for polymorphism
 Outer ring for protein domain
 Pie chart for percentage of
 polymorphic RGA markers

NBS-LRR	60%
NBS	13%
LRR	9%
ABC	6%
РК	5%
NBS TM	4%
LRR TM	2%
XX 📃	1%
📙 No Domain	1%

138 RGA markers classified 178 core entries into four subgroups using four methods.

Two dimensional PCA

STRUCTURE

Comparison of subgroups by RGA markers and SSR among 178 US rice core entries

Subgroup	IND _{SSR}	TEJ _{SSR}	TRJ _{SSR}	AUS _{SSR}	ARO _{SSR}	Total
AUS _{RGA-UPGMA}	7			35	1	43
IND _{RGA-UPGMA}	47	2	3	1		53
JAP _{RGA-UPGMA}	5	32	31	3	8	79
GLA _{RGA-UPGMA}	A			3(GLA)		3
AUS _{RGA-Struct}	1			36	1	38
IND _{RGA-Struct}	56	4	3	1		64
JAP _{RGA-Struct}	2	30	31	2	8	73
GLA _{RGA-Struct}				3(GLA)		3
Total	59	34	34	42	9	178

SSR results from 2010 Natural Science 2(4):247-291

Comparatively cluster analysis between SSRs (A) and RGAs (B and C)

Groups of A are from 2010 Natural Science 2(4):247-291

Comparative analysis of genetic variations among subgroups classified by SSR markers and RGA markers

Subgroup	Entries	PPA%	Na	Ne	Н	Ι	Nm*
IND _{SSR}	59	82.80	1.8280	1.3703	0.2247	0.3476	
TRJ _{SSR}	34	69.84	1.6984	1.3056	0.1848	0.2866	
TEJ _{SSR}	34	72.49	1.7249	1.3253	0.1952	0.3009	2.9210
AUS _{SSR}	42	84.13	1.8413	1.3773	0.2254	0.3477	
ARO _{SSR}	9	53.70	1.5370	1.2864	0.1712	0.2608	
Mean			1.9603	1.4032	0.2429	0.3761	
St. Dev			0.1955	0.3527	0.1796	0.2409	
IND _{RGA-UPGMA}	53	79.10	1.7910	1.3497	0.2122	0.3284	
JAP _{RGA-UPGMA}	79	80.16	1.8016	1.3236	0.1977	0.3077	2.7896
AUS _{RGA-UPGMA}	43	78.04	1.7804	1.3461	0.2085	0.3225	
GLA _{RGA-UPGMA}	3	16.93	1.1693	1.1100	0.0642	0.0953	
Mean			1.9603	1.4065	0.2442	0.3777	
St. Dev			0.1955	0.3553	0.1803	0.2414	
IND _{RGA-Struct}	64	83.07	1.8307	1.3643	0.2212	0.3425	
JAP _{RGA-Struct}	73	75.93	1.7593	1.3042	0.1864	0.2902	2.5546
AUS _{RGA-Struct}	38	73.02	1.7302	1.3350	0.2002	0.3081	\smile
GLA _{RGA-Struct}	3	16.93	1.1693	1.1100	0.0642	0.0953	
Mean			1.9603	1.4050	0.2438	0.3773	
St. Dev			0.1955	0.3534	0.1796	0.2407	
Total	178	96.03					

Global distributions of four subgroups from RGA markers using STRUCTURE

Cluster analysis of ten geographic regions using RGA markers

Summary

>RGA markers can be used for analyses of

genetic structure

RGA markers have less discriminatory power

than SSR markers

► RGA markers can reveal molecular basis of rice subgroup differentiation in pathogen resistance

Acknowledgements

Guangjun Ren Xianjun Lu Fangyuan Gao Xianting Wu WenGui Yan

National Natural Science Foundation of China (30900891)

National High-tech R&D Program of China (2012AA101102-5)

