

Disease Scenario in NEPZ (Jharkhand) with reference to Hybrid Rice

Atul kumar (IARI Pusa Bihar) atulsingh2003@yahoo.co.in

Public-Private Partnership

Coming together is beginning

Keeping together is progress

Working together is success

Henry ford

Why and what is the need??

- Diminishing area
- Biotic & Abiotic stresses
- Increasing demand, decreasing supply
- Estimation of losses
- How to minimise it
- Eastern India- a ray of hope

Hybrid Rice

20-30% yield advantage
65% area in China
Area ~ 2mha ??

Methodology

Survey in Identified areas

Recording of Diseases

Recording of other

parameters

Comparison

Most Widely Cultivated Rice Hybrids in India

- 1. PA 6444
- 2. PHB 71
- 3. PA 6201
- 4. KRH 2
- 5. Pusa RH 10
- 6. Sahyadri etc

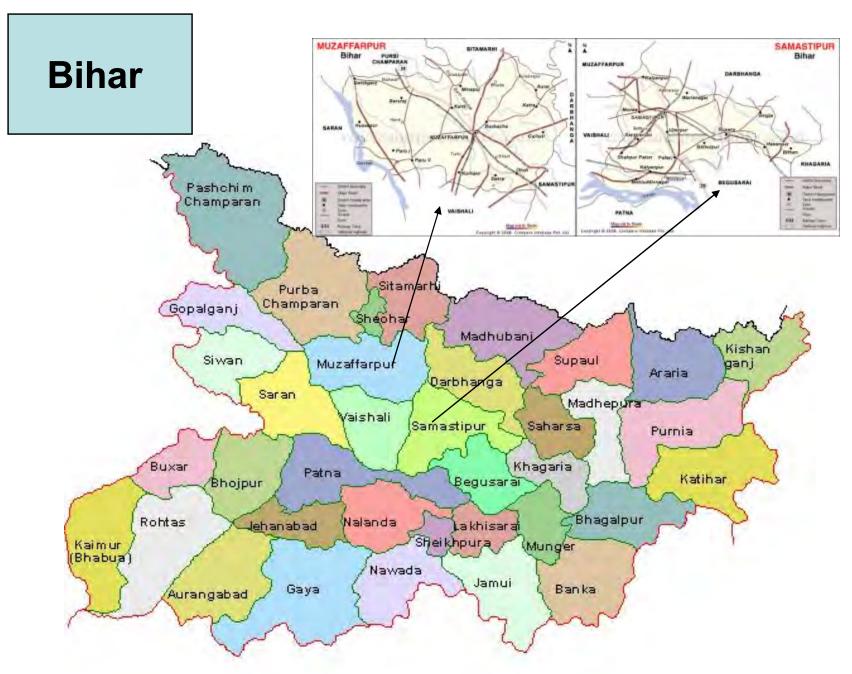
Hybrid Rice Testing trials

Jharkhand

Survey (Ranchi)

- 4 Blocks
- 1.Kanke
- 2.Ratu
- 3. Mandar and
- 4.Namkom
- Most prominent diseases in HR
- 1. False Smut
- 2. Blast
- 3. Brown spot

False Smut



Disease Scenario in Jharkhand (District – Ranchi)

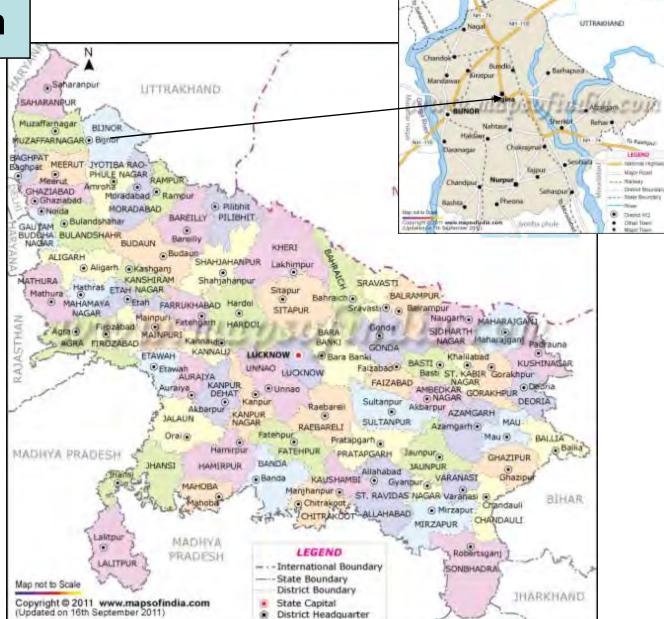
Variety	Disease Incidence							
	BLB	False Smut	Brown spot	Sheath Blight	Blast	Grain types	Yield (q/ha)	
	% leaf area damage	% Infected Florets	% leaf area damage	% Plant Area Damage	% leaf area damage			
PA 6444	1.2	12.3	3.5	Trace	4.2	M	67.4	
Lallat	5.4	2.1	5.1	8.6	15.5	M	33.6	

Survey

- Bihar Samastipur & Muzaffarpur
- 4 Blocks (Pusa, Morsand; Sakra, Musahari)
- **Prominent diseases:**
 - 1. Brown Leaf spot
 - 2. False smut
 - **3. BLB**
 - 4. Sheath Rot

Brown spot symptoms

Brown spot Infected Panicles


Disease Scenario in Bihar (District – Samastipur & Muzaffarpur)

Variety	ty Disease Incidence							
	BLB	False Smut	Sheath Rot	BLS	Stem	Grain	Yield	
					Borer	types	(q/ha)	
	% leaf area damage	% Infected Florets	% Affected Tiller	% leaf area damage	% White Heads			
PA 6444	5.4	6.3	2.2	12.5	2.9	M	69.7	
RajendraM ahsuri	16.4	2.4	5.7	20.6	3.8	F	37.8	

Uttar Pradesh

BIJNOR

Survey

Western U.P- Bijnor Districtt

4 Blocks (Kotwali, Dhampur, Afjalgarh,

Nazibabad)

Prominent diseases:

- 1. Bacterial Leaf Blight
- 2. False Smut
- 3. Sheath Rot
- 4. Sheath Blight

Bacterial leaf blight

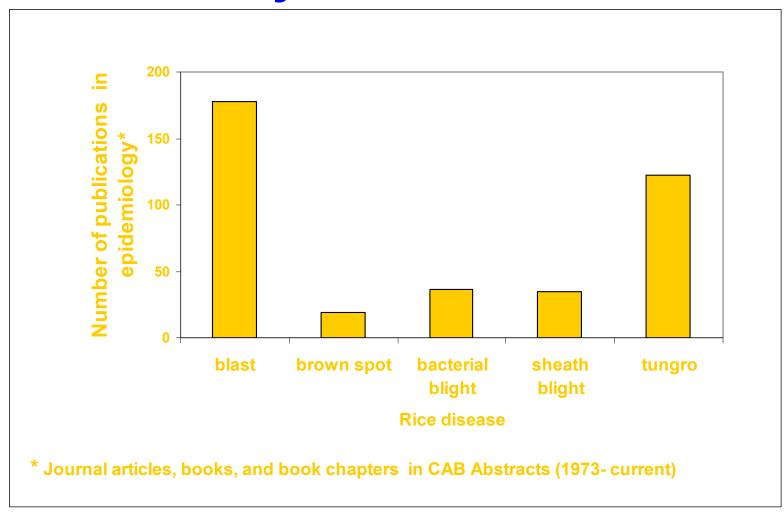
Disease Scenario in Western U.P. (District – Bijnor)

Variety	Diseases Incidence							
	BLB	False Smut	Sheath Rot	Sheath Blight	Blast	Grain types	Yield (q/ha)	
	% leaf area damage	% Infected Florets	% Affected Tiller	% Plant Area Damage	% leaf area damage			
PA 6444	20.4	14.3	4.2	6.5	trace	M	71.7	
Sharbati	46.4	11.4	25.7	28.6	17.5	F	37.8	

Why plant disease epidemiology?

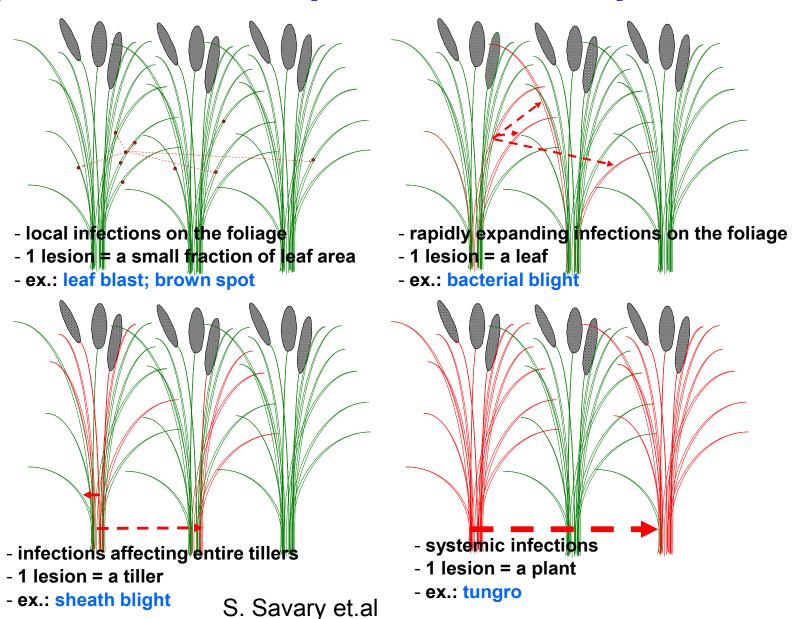
- 1. To predict epidemics which will inevitably occur (possibly new diseases) tomorrow.
- 2.Climate change labour resource, naturalresources, energy shortage.
- 3.New approaches are required for emerging diseases.

Pertinent questions


- 1. Why do some diseases take off, whereas others do not?
- 2. Why do some strains, races, or pathotypes die out, some coexist, and others come to dominate pathogen populations?
- 3. How does the inherent variability associated with epidemics translate into risk?
- 4. Given that new infections occur at the small scale but epidemics are manifest at the large scale, how can we scale from individual to population behavior?
- 5. How can this information be used to identify control methods?
- 6. How can this information be used to optimize the efficient deployment and durability of control methods?
- 7. How does the way we grow and protect our crops or manage our natural and seminatural environment affect these outcomes?

Ref: Gilligan & van den Bosch, 2008. Annu. Rev. Phytopathol. 246:385-418.

Diversity of rice diseases



S. Savary et.al 2008

Spatial scales of plant disease epidemics

Limitations

- 1. Yield advantage far less than expected.
- 2. Inconsistency in yield performance.
- 3. Less acceptable cooking quality.
- 4. Lack of productive hybrids for medium late and late conditions.
- 5. Lesser price for hybrid rice.
- 6. Threats to native biodiversity.
- 7. Hybrids to respond at low inputs lacking.

Future thrusts

- 1. Basic studies are required for emerging diseases.
- 2. Good Cooking quality parameters.
- Higher subsidies to small and marginal farmers.
- 4. Research on hybrids responding to low inputs.

Young Scientist fast track project

"Development of diagnostics for detection of *Bipolaris oryzae* in India by molecular markers and its eco friendly management".

DST, Govt Of India

3 years

Rs 21 lakhs only

Acknowledgements

Dr. H.S. Gupta (Director, IARI)

Dr. Malavika Dadlani (JDR(Res) IARI)

Dr. I. S. Solanki (Head, IARI Pusa Bihar)

Co- authors

&

Department of Science& Technology, GOI (Funding)

What the caterpillar calls the end the butterfly calls the beginning

Thanks for the patient hearing